Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen.

نویسندگان

  • Irina Korichneva
  • Beatrice Hoyos
  • Ramon Chua
  • Ester Levi
  • Ulrich Hammerling
چکیده

Zinc is a structural component of many regulatory molecules including transcription factors and signaling molecules. We report that two alternate signaling pathways of protein kinase C (PKC) activation involving either the lipid second messengers (diacylglycerol and its mimetics, the phorbol esters) or reactive oxygen converge at the zinc finger of the regulatory domain. They all trigger the release of zinc ions. An increase in intracellular free Zn(2+) was observed by confocal microscopy in intact cells treated with phorbol ester or by mild oxidation. The source of liberated Zn(2+) was traced to PKC and particularly the zinc finger domains. The activated form of native PKCalpha contained significantly less Zn(2+) than the resting form. Furthermore, purified recombinant PKC protein fragments shed stoichiometric amounts of Zn(2+) upon reaction with diacylglycerol, phorbol ester, or reactive oxygen in vitro. Our results offer new insight into the regulation of PKC. Far from cementing rigid structures, zinc actually is the linchpin that orchestrates dynamic changes in response to specific signals, allowing kinase activity to be turned on or off.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Are zinc-finger domains of protein kinase C dynamic structures that unfold by lipid or redox activation?

Protein kinase C (PKC) is activated by lipid second messengers or redox action, raising the question whether these activation modes involve the same or alternate mechanisms. Here we show that both lipid activators and oxidation target the zinc-finger domains of PKC, suggesting a unifying activation mechanism. We found that lipid agonist-binding or redox action leads to zinc release and disassem...

متن کامل

Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide.

The pharmacological properties of garlic and its derivatives are long known, and their underling mechanisms are being extensively investigated. In this study we have addressed the effects of diallyl disulfide (DADS), an oil-soluble garlic molecule, on cell growth of neuroblastoma cell SH-SY5Y, focusing on the redox events associated with this compound. Treatment of SH-SY5Y cells with DADS resul...

متن کامل

Cell Death Induced by Diallyl Disulfide Kinase/c-Jun Signaling Cascade Mediates Neuroblastoma

The pharmacological properties of garlic and its derivatives are long known, and their underling mechanisms are being extensively investigated. In this study we have addressed the effects of diallyl disulfide (DADS), an oil-soluble garlic molecule, on cell growth of neuroblastoma cell SH-SY5Y, focusing on the redox events associated with this compound. Treatment of SH-SY5Y cells with DADS resul...

متن کامل

Neuroprotective effects of reactive oxygen species mediated by BDNF-independent activation of TrkB.

Reactive oxygen species (ROS) have diverse biological consequences in the mammalian CNS, but the molecular targets mediating these pleiotropic effects are incompletely understood. Like ROS, the neurotrophin receptor, TrkB receptor tyrosine kinase, has diverse effects in the developing and mature mammalian brain. Our discovery that zinc can transactivate TrkB, together with the finding that ROS ...

متن کامل

SAG, a novel zinc RING finger protein that protects cells from apoptosis induced by redox agents.

SAG (sensitive to apoptosis gene) was cloned as an inducible gene by 1,10-phenanthroline (OP), a redox-sensitive compound and an apoptosis inducer. SAG encodes a novel zinc RING finger protein that consists of 113 amino acids with a calculated molecular mass of 12.6 kDa. SAG is highly conserved during evolution, with identities of 70% between human and Caenorhabditis elegans sequences and 55% b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 46  شماره 

صفحات  -

تاریخ انتشار 2002